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SUMMARY

A mathematical model is developed by which the following satellite
orientation and control problems may be resolved: (1) determining at-
titude for maximum area of solar cells in sunlight; (2) generating slew-
ing commands for a change in attitude; (3) computing star tracker
gimbal angles for maintaining proper orientation; and (4) determining
when guide stars are occulted by the earth, sun, and moon.
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MATHEMATICAL ANALYSIS FOR THE ORIENTATION AND
CONTROL OF THE ORBITING ASTRONOMICAL

OBSERVATORY SATELLITE

by
Paul B. Davenport
Goddavd Space Flight Center

INTRODUCTION

Sometime in 1964 the NASA expects to launch the first Orbiting Astronomical Observatory (OAO).
The OAOQ, consisting of the spacecraft and the observatory (experimenter's package and equipment),
is expected to have a lifetime of one year. The spacecraft, orbiting at an altitude of approximately
500 miles, will carry highly refined equipment to conduct astronomical experiments free from the
disturbing influence of the earth's atmosphere.

The spacecraft will be capable of directing the experimenter's equipment anywhere in space and
of maintaining this direction with a high degree of accuracy. This will be accomplished by a complex
stabilization and control system whose major elements are: (1) sun sensors, rate gyros, and a jet
system to initially orient and stabilize the spacecraft; (2) coarse inertia wheels to reorient the space-
craft, and fine inertia wheels to maintain the desired orientation; (3) a set of six star trackers to de-
termine the orientation of the OAQ; and (4) a magnetic unloading system to keep the momentum in the
fine inertia wheels from building up excessively.

To place the OAO in the proper orientation in space, the precise slewing angles needed to accom-
plish this feat must be known, as well as the gimbal angles of the star trackers when they are locked
on their respective guide stars. In addition to these problems various physical constraints such as
star occultation by various bodies including the earth, sun, and moon must be considered. There are
also many constraints due to the spacecraft itself, which include such things as obtaining maximum
power by proper positioning of the solar paddles, keeping the optical axis away from the sun's dam-
aging rays, and restricting the gimbal angles within their limits. This report describes the develop-
ment of a mathematical model to aid in the solution of these problems.

COORDINATE SYSTEMS

The relative positions of the various bodies in space will be defined by giving their directions
with respect to a fixed right-handed rectangular coordinate system with axes u, v, w and origin at the
earth's center of gravity., The u-v plane will be the equatorial plane at some epoch T, the



positive u axis pointed toward the vernal equinox and the positive w axis toward the true north pole at
time T.

The position of a star will be denoted by its right ascension « and declination 3. In most applica-
tions the direction cosines a, b, ¢ of the star will be needed; these are given by

a = cosdcosa,
b = cos?dsina ,
c = sind .

Since the earth revolves about the sun, the position of the stars is not exactly fixed in this co-
ordinate system; however, the maximum stellar parallax due to this motion is about 0.8 second of
arc for the nearest star,

The positions of the sun, moon, and OAO will be given at any time t {measured from the epoch T)
by their respective orbital elements, which are:

3
It

mean angular motion in the plane of the orbit

the eccentricity of the orbit

1
I}

Q1 = the right ascension of the ascending node; 0 < < 2«4

i = the inclination of orbital plane to the u-vplane; 0 <i <=
w = argument of perigee; 0 £ w < 27
M, = the mean anomaly at time T

Since no orbit is truly Keplerian, first and higher derivatives of the various elements may be
necessary according to the accuracy required. It may also be necessary to update these elements
from time to time,

A secondary coordinate system with axes x, y, z is defined with respect to the OAO. The origin
of the system is at the geometric center of the OAO with the optical axis coincident with the x axis,
The positive slewing motions of yaw, pitch, and roll are defined to be clockwise rotations, as seen
from the origin, about the positive z, y, and x axes respectively.

The attitude of the OAO in space is described by specifying the right ascension a and declination $
of the x axis and the angle 3, which is the angle the y axis makes with the u-v plane measured in
the y-z plane (positive direction toward the positive 2z axis).

Because of the great distances involved, the angular coordinates of the stars and the sun will be
considered to be the same whether the origin of the coordinate system is at the center of the earth or

the spacecraft. In the case of the sun, placing the center at the OAO instead of the earth produces a



maximum error of less than 10 seconds of arc because of parallax (for a 500 mile circular orbit).
For the stars this error is completely negligible. However, for the moon the error can become as
great as 1 degree.

For each star tracker on the OAO we define a coordinate system with axes x,, vy, z, such that
the outer gimbal angle o is in the x; - y, plane {positive angle measured from positive x, towards
positive y,) and the inner gimbal angle g is the angle from the x, - y, plane (positive towards nega-
tive z,). Thus the direction cosines of a star (with gimbal angles o and 4) in this coordinate system
are given by

a = COSucoso ,
b = cosusino ,
c = -sing .

TRANSFORMATIONS

The mathematical approach here is based on the algebra of rotations (matrix algebra); but, since
we are concerned only with directions, the rectangular coordinates of a vector will be identical to its
direction cosines. Thus, from the preceding definitions, if the attitude of the OAQO is given by q, 5,8
and if (u,, v,. w,) is any vector in the u, v, w system, then the coordinates x,, y,, z, of this vector
in the OAO system are given by

Xo Yy
Vo = TﬁTSTa vy y
z, W,
where
cosa sina 0 cos8 0 sind
T, = |-sina cosa 0 ], T, = 0 1 0 ,
0 0 1 -sin8 0 cos$
1 0 0
T/3 = 0 cosfB sinf
0 -sinf cosf

In addition, if the spacecraft is yawed, pitched, or rolled by ¢, 6, or ¢ respectively, the coordinates
x,, ¥y, z,of the vector in this new coordinate system are given by



Xy X0 Xo Xo
¥Y; = T\p Y() [ T5 yo or qu yO >
% 2y Zy Zo
where
cosy siny 0 cosf 0 -sin#
T‘p = -siny cosy O}, T, - 0 1 0 \
0 0 1 sing 0 cos &
1 0
T¢ = 0 cos ¢ sind

0 -sin¢ cos¢

In order that all angles y may be defined uniquely, we use the function

v =

tan™! (a/b)

(1)

with the understanding that the sign of a is the same as that of sin y and the sign of b is the same as
that of cos v. Thus the signs of a and b in Equation 1 determine the proper quadrant, and the inverse
tangent of a divided by b determines the proper value. For all other inverse functions the principle

value shall be taken. The range of all angles defined above is as follows:

Right ascension of x axis «

Declination of x axis ¢ ~-7/2 <6
Roll of y axis 8 -1 £ 8¢
Yaw of OAO ¢ -m <Y<
Pitch of OAO ¢ -m £ 0<
Roll of QAQ ¢ -7 < ¢ <

DETERMINATION OF FINAL ROLL

/2

If a, and 3, are the right ascension and declination of a new target star s, then we wish to de-
termine the roll 8,which will orient the solar paddles such that they receive maximum sunlight when
the optical axis points towards the star S,. This will be the case when the angle » between the sun-
line and a normal line of the paddle plane is a minimum. Letu_, v_, w_ be the direction cosines of
the sunline in the u, v, w coordinate system. The direction cosines x,, y, z, of the sunline in the
x, y, z system (optical axis pointing toward S,) are then found as follows:

X u

«
1
]
o
-
<



The direction cosines of the sunline in the x, y, z system after a roll of 8 are given by

Xe oy

y, cosB * z_sinfi,
z_cosf -y, sinf -

If x,, v,. z, are the direction cosines of a directed normal from one side of the paddle plane, the

cosine of the angle y between this normal and the sunline is expressed by

£(8)

cosy

(2)
= x,x, t y,(y, cos B+ z, sin B) + z,(z, cos 8-y, sin B8).
The requirement that » be a minimum implies that cos ¥ be a maximum; that is,
df - _ 4
d,E = =s81inYy d,B
= y,(z, cos 8 -y  sinf) - z (z, sinf8 + y_ cos )
= (ypzs - zpys) cos 5 - (y,y, * szs) sinf
= 0 y
or
Y. Z, - Z.¥,
tan 2 = P s PTS (3)

ypys + szs

There are two possible values of 3 that will satisfy Equation 3: 8, and 3,. However, the value that
maximizes Equation 2 is the desired value of 3; denote this value by A,

The above analysis has considered only one side of the paddle plane, but the other side is handled
in exactly the same way with the normal whose direction cosines are -x_,, -y, -z, This requires
that the negative of Equation 2 be a maximum, which again leads to Equation 3. The proper solution
this time will be the other value of j to satisfy Equation 3, namely, 8,. Thus, to determine the best

value of 3, we evaluate f(5,) and -f(3,), and pick the value of 3 that gives the maximum of the two.

GENERATION OF SLEWING COMMANDS

If the OAO has an initial attitude of a,, 8, , 8, and it is desired to reorient in order to obtain an
attitude of a,, 5,, 8,, the slewing commands needed to accomplish this reorientation must be



determined. Since the OAO may be rotated about any one of three axes, there are twelve possible
slewing sequences. These slewing sequences are listed as follows:

yaw - pitch - roll yaw - pitch - yvaw
roll - pitch - yaw roll - pitch - roll
yaw - roll - pitch yaw - roll - yaw
pitch - roll - yaw pitch - roll - pitch
pitch - yaw - roll pitch - yaw - pitch
roll - yaw - pitch roll - yaw - roll

The analysis for determining the amount of slewing required is similar regardless of the slew-
ing sequence; therefore we shall refer to a general slewing sequence of i-j-k. The matrices of these
i-j-k rotations will be denoted by T,, T,, and T, respectively.

If v is any vector with coordinates given in the OAOQ system with attitude a,, 5,, 8,, the matrix to
find the coordinates of v in the OAO system with attitude «,, 3,, 3, can be obtained as a product of
Ssix matrices:

~tp-17-1
o, Ts, Ta TSI T50

where T !indicates the inverse of T. Likewise, if a slewing sequence of i-j-k is given when the OAO
has an attitude of a,, §,, 5,, which causes the spacecraft to have a final attitude of a,, 8, B, the
matrix of the transformation from the initial attitude to the final is found from the matrix product

T, T, T,. ThereforeT,, T,, and T, must satisfy the matrix equation:

= -1 -1 -1 .
T, T, Tp, T T, T,IT0 T, (4)

1 1

The right-hand side of Equation 4 is a 3 X 3 matrix that can be determined from a,, 3, 8, a,, 8§, 0,-
Therefore this matrix is independent of the slewing sequence. This right-hand matrix shall be denoted
as C with elements C, ;. Thus for each slewing sequence the left-hand side of Equation 4 can be com-
pared with the C matrix to determine the amount of slewing. Several examples are given below:

SEQUENCE: YAW-PITCH-ROLL

cos G cos y . cos dsiny ) -siné
T¢T9 T\p = sin¢gsinf8cosy - cos 8siny, singsinfsiny + cosdcosy, singdcos 8| ;
cospsinfcosd + singsiny, cos ¢sinfsiny - singcosy, cos ¢ cos &

and comparing with the C matrix implies that

C,‘,3 cos 6,

C“/cos g.

sin@ = -C siny = Clz/cosg, sing

13 '

i}/Clzx +Ch = iyc223 +ChL ., cosy = C“/cosﬁ, cos ¢

cos &



SEQUENCE: ROLL-YAW-PITCH

cos fcos y, cos sinycos ¢ + siné&sing , cos @sinysing - sinfcos¢
TeT, Ty = -siny cos Y cos ¢ , cos Y sing ;
sinfcosy, sinfsinycos¢ - cosfsing , sinfsiny sing + cos fcos ¢

and comparing this with the C matrix implies that

siny = —C,, , sing = C, feosy, singd = C”/cos¢f,

cosy = +YC2 +CH = tyCh+Cl , cosf® = C, fosy, cos¢d = Cpy cos .

SEQUENCE: YAW-PITCH-YAW

cos ys, cos fcosy, ~ siny, siny, , cos Jy,cos siny, + siny, cosy, , -cosy,sin e
T¢2T6T¢:1 = - (siny, cos Gcosy, * siny, cosy,), -siny, cos @siny, + cosy,cosy,, siny, sin @
sin @ cos ¢, ) sinfsiny, ) cos &

and comparison to the C matrix gives

sinf = iVC;l ‘rC;2 = i]/Clz3 +C223, siny, = Cj;, sin @ , sin\/12 = C23 sin @,

cosd = Gy, , cosy, = C, fsinf, cosy, = ~C., sin 4.

Thus for each slewing sequence we obtain two solutions corresponding to the plus and minus sign
of the radical. Therefore there are actually twenty-four possible slewing commands.

We could continue the above process for all twelve combinations of the matrix T, T; T, , compare
each with the C matrix, and find that there is a definite pattern as to which elements of the C matrix
to choose for a given slewing sequence. Let the numbers 1, 2, and 3 be used to represent roll, pitch,
and yaw respectively (2-1-3 would indicate a pitch-roll-yaw sequence); then, for all sequences i-j-k
where the same type of slew is not used more than once, we have the following relations:

Oy33 = Ta31 T P3127 ~%3p T "%z T T :

sinj = oijkai,

cosj = i]/Eﬁ*Cfi = YCh +CL

-oiikC“/cosj ,

cosi = C,, jeosj , cos k = C,, /cosj

{l

sini = -oiikaj cos j, sink



In the degenerate case where C,; =C,, =C,, =C;, =0, the value of j is either plus or minus
90 degrees. In this case i and k must satisfy the following:

sin (k £ o, i) oukC” ,

cos (k £ o,,, 1) = F0,,C,, .

The upper signs are taken when j is +90 degrees, and the lower sign when j is -90 degrees.

Example 1 — Assume the matrix Cis given. Determine the slewing angles for a pitch-roll-yaw
sequence.

By definition i is 2, j becomes 1, and kis 3. Here o is - 1; therefore,

singg = -C

32

cos¢p = 1yCh +C2

sing = C”/éosgb. siny = C,,/cosd ,

cos 8 = C”/éosqﬁ , cosy = C,,/kos¢

If the slewing sequence includes the same type of slew twice (of the form i, -j-i,), and k is the
slew not used, then the slewing angles are defined by

sinj = $yCh +C7 = yCH +CJ

cosj = C“ ,
sini1 = Cii sinj , sini2 = Cji sinj ,
cos il = crjiCik sinj, cos i2 = —crjiCki sinj ,
Tyg = T33 = T3p = Oy = Oy = 0y, =1

When C,, =C,, =¢C;;, =C; =0, the angle j is either O or 180 degrees, depending on whether C_,
is plus or minus. In this case the angles i, and i, must satisfy the relations



sinf(i, +i,) = o,,C, »

H+

c05(i2 iil) = £C.,,

where the plus sign is taken if C,; is positive and the minus sign if C,, is negative.
Example 2 — Determine the slewing angles for a yaw-pitch-yaw sequence.

In this case i becomes 3, j is 2, k equals 1, and ¢ is +1:

: . 2 2 - 2 2
sinf = insz +C31 = i}/C23+C13 ,

cos® = C,, .,
siny, = C,,/siné , siny, = C23 sin @ ,
cosy, = C;, /sind , cosf, = -C,,/sind .

DETERMINATION OF GIMBAL ANGLES

The determination of the star tracker gimbal angles will depend on the physical mounting of each
star tracker with respect to the OAO's coordinate system. Let T, (i=1, -, 6) be the transformation
that determines the coordinates of a vector in the OAO system from the coordinates of the vector in
the i*" star tracker system. Thus, if o, and 4, are the outer and inner gimbal angles respectively
of the i*h star tracker, the direction cosines in this star tracker system are given by cos ; cos o,
cos i, sino,, -sing, and the direction cosines in the OAO system are obtained from the following

relation:

COS i, COS O,
T, | cos u, sin o,
- sinpy,;
Thus, if the OAO has an attitude defined by a,, 3,, 5, and the i*? star tracker is locked on a star with

right ascension «,; and declination § , the direction cosines X ¥ oz, of the star with respect to this
star tracker system can be determined from

X, cos &, cosa;
- -1 :

v, = Ti TB2T5 2’1'(22 cos 51 sina,

z. / sinSi



The gimbal angles o, and y; are then found from the following expressions:

If the OAO is slewed with a j-k-! slewing sequence and gimbal angles o, o after the slewing
2
are desired as a function of the gimbal angles o, , i before the slewing, the following formulas may

be applied:
X, CoS 4ty O8O,
= -1 H
Y, T, TlTkT,.Ti cos p; sino; |
z, ~sinu,
1

_ -1
7, tan <yi/€(i) i

Bi, = tan™? (-—zi/]/xi2 +yi2).

SATELLITE CONSTRAINTS

Of the twenty-four possible slewing sequences there may be several that are not applicable be-
cause of restrictions imposed by the spacecraft itself. These restrictions may be investigated by the
same techniques employed in the earlier sections.

One such restriction is that the sun shade may not protect the experimenter's equipment from
the sun's rays if the optical x-axis is within 45 degrees of the sun. The first OAO also will have an
experiment at the opposite end of the optical axis; thus in this case the minus x-axis must also be
kept 45 degrees from the sun,

Although the sun shades are designed to shut if either experimental axis comes within the pro-
hibited area of the sun, it is desirable to avoid a slewing sequence that would require such action. The
avoidance of such slews will eliminate damage to the experimental equipment even if the sun shade

fails to work properly.

Another satellite constraint is that at least two star trackers must not exceed their gimbal limits
during the entire slewing sequence. If this is not possible, new star assignments must be made at

intermediate slews.
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To determine whether a target star with right ascension o and declination s lies within the pro-
hibited area of sun, we merely determine the angle from the star to the sun. The cosine of this angle
v is given by

cosy = X_cosdcosa ty cosdsina + z_ sin$
s s s M

where x_, y_, z_ are the direction cosines of the sun. Thus, if y is less than 45 degrees, this star may
not be viewed, In the case of the double-ended OAO, y must lie between 45 and 135 degrees before
viewing is permissible.

To check whether a slewing sequence will cause the optical axis to come within 45 degrees of the
sun, the angle ¥ between the sun and optical axis can be written as a function of the slewing angle.
From this functional relation determine the domain of the slewing angle that makes y = 45 degrees or
less. If the desired slew lies within this domain,the slew is prohibited. If a, 8,5 £, definethe attitude
of the OAO before the slewing sequence begins and if u_, v_, w_ are the direction cosines of the sun in

theinertial system, the direction cosines of the sun in the OAO system x_, y_, z_are given by

After a slew of A, where x may be either a yaw, pitch, or roll, the direction cosines of the sun

’ r

x., v,, z, after the slew are defined as

X X
s S

o | T Th |
1

Zs Zs

The cosine of the angle between the sun and optical axis as a function of A is then

x cosA t bsinA

where b =y if » indicates a yaw and b = -z_ if » is a pitch. A roll slew need not be considered,
since a roll does not affect the angle between the sun and optical axis.

If A, is the desired slew, the slew will be allowable if

x_cosA t bsinA < cos45° (5)

11



for all A between 0 and A, Equation 5 may be written as

s b cos 45°

————————pos A + ———— sink £ —FT—/—/——— !
]/xsz + b2 x: + b2 ]/x 2 4 p2
s

or
cos €cos A + sinesinA = cos (e-A) £ 2545 -
* 1)x52 + b2
where
e:tanl(bxs) , -n<e<T7
If
l cos 45° )
]/ 2 2 ’
| x5 F b
the slew is always permissible. If
cos 45”7
el 1,
1/ x52 + b?

the slew is permissible only if none of the following angles lie between 0 and A,:

€ -7
€ t T

where



The next slew in the sequence may be checked in exactly the same way after replacing x_, y_, z,
by X; ’ y;; Z; .

The gimbal angles after each slew of a sequence may be obtained in the same fashion that the
final gimbal angles are determined. If o, , and u, ,are the outer and inner gimbal angles of the i *"
star tracker and a slewing sequence of !-m-n is to be performed, the gimbal angles after the jth

slew are given by
- -1
O’ij = tan (y“/xij)
- -1 ]/ 2 2
By; = tan (—z“/ %5 +yi,-)

where

cos g, COSO;
0 0

°3
H

T,T cos,uiosma'io ,

-sinu,
0

<
I
!
'
o
o
L8
|
—
o

o
t
o)

'
o
o
|
-]
-
-
=

5

o
N

OCCULTATION

The knowledge of stellar occultation is necessary for several important reasons: First, the at-
titude of the spacecraft cannot be maintained if less than two star trackers are tracking at any time;
second, the occultation of the target star during an experiment would result in wasted time.

The three bodies that cause stellar occultation are the earth, sun, and moon. Occultation due to
the sun and moon will be less frequent than that due to the earth. Because of this, the time of oc-
cultation due to the sun and moon can be determined in a similar manner, In both cases the origin of
the coordinate system is assumed to be centered at the OAO. This introduces an error due to paral-
lax of about 10 seconds of arc for the sun and about 1 degree for the moon.

13



Let i and ( be the inclination and right ascension respectively of either the moon's or sun's
orbit, and let «, and 5, be the right ascension and declination of the i*" star. The direction cosines
a, b, c of this star in a coordinate system whose x-y plane is the plane of the orbit are given by

a 1 0 0 cos{! sin{? O cos &, cosa,
b = 0 cosi sini -s5in{) cosQl 0O cos §; sina,
c 0 -sini cosi 0 0 1 sin 3,

The cosine of the angle » between the star and the sun or moon is then
cosy = acos {wtu) + bsin {wtpy)

where «is the argument of perigee and x is the true anomaly. The general requirement is to de-
termine when the angle y will be less than some fixed angle » (45 degrees for the sun, one-half the
angle subtended by the moon plus errors for the moon). When  just equals A, the corresponding time
t is the time of immersion or emersion for that star. This requirement of equality may be expressed
as

acos {wtu) +bsinlw+pu)l = cosh , (6)

or
cosecos {wtu) + sine sin (wt+pu) _cosr , (7
Ya? + 12
where
€ = tan”! (b/a) , 0<e<2m
Equation 7 may also be written as
cos A
cos (e ~w—u) = —
yaz + b2
so that
H = €-w—m
where

7 = t | cos"! (V—CPS’;K:—) +2k77:| ko= 0,1, 2,
a? + b?

14



Thus each value of » determines the value of x at an immersion or emersion of the it"star. This
value of . will correspond to an immersion if

sin {e~w=u) >0 ,
and to an emersion if
sin (e ~w~-pu) <0
Once u is known, the corresponding value of time can be obtained by the following Vrelations:

_ ] . *
E - tan-! <__Vlesmﬂ> + o [_.#_]

e *+ cos 27
M

M = E-esinE

t = T (8)

where e is the eccentricity of the orbit, n the mean motion of the body in the plane of the orbit, M, the
mean anomaly at epoch, and t the time from epoch.

Although occultation due to the earth is more frequent and troublesome than that due to the sun
and moon, it can be handled in a similar manner. The angle A (immersion or emersion occurs when
the angle between OAQO and the star equals A) in this case is not a constant but a function of the OAO's
range. Thus immersion and emersion can be determined analytically only when the spacecraft is in
a circular orbit. For small eccentricity, however, the circular solution using the mean range should
give sufficient accuracy.

Because of the great distances of the stars we may assume that the line from the origin to a star
is parallel to the line from the OAO to the star. Then, with the additional assumption of a spherical
earth, the cosine of x (see sketch) may be determined by simple trigonometry.

To star

OAO

* [x] indicates the greatest integer less than or equal to x.

15



Thus

cosA =

where the unit of distance is the earth's radius. Hence, if r is constant, occultation by the earth may
be handled in the same manner as that of the sun and moon, that is, by Equations 6 through 8, where
the elements are those of the OAO's and where the x-y plane of the coordinate system is the OAQ's

orbital plane. The test for immersion or emersion in this case is the reverse of that given for sun-

moon occultation,

CONCLUDING REMARKS

The analysis and mathematical models contained in this report are intended to be quite general.
In many cases the formulas may be simplified if accuracy requirements warrant it. In other cases
a different coordinate system will simplify some models; for example, the ecliptic system would re-
duce any model involving the sun's coordinates, Thus the formulas contained herein are not de-
pendent on any particular coordinate system, and simplifications may be made by simply omitting
terms in various expressions.

16 NASA-Langley, 1963 G-299



